If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4z^2+8z-12=0
a = 4; b = 8; c = -12;
Δ = b2-4ac
Δ = 82-4·4·(-12)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-16}{2*4}=\frac{-24}{8} =-3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+16}{2*4}=\frac{8}{8} =1 $
| 7-5y+3y=17 | | y=250*4^3/2 | | y=250•4^3/2 | | –9+2y=3y | | ¼x=3/6 | | 9k^2-2=11 | | 5y+8=3+6 | | 16c^2-14=-12 | | 27=3(3x-9) | | √3m+1=√7m-9 | | -15-8x=-27-4x | | -2b-28b-90=0 | | 6(×-2)-4x=30 | | b^2-10b=-10 | | 7x-8=4x+100 | | -2x^2=-2x-24 | | -3x+12=-5x-2 | | 25x=125^x-7=0 | | 2t+t=90 | | 81*x^2=0 | | 18-6(8-4x)=-3(4x-14 | | -1/3(24x-36)=60 | | 18-6(8-4x=-3(4x-14 | | -5/6(x+6)=-10 | | 18+-6(8-4x)=-3(4x+-14) | | -24=-2(x+19) | | a^2+40=13a | | 1/4(x+7)=8 | | 14r+–7r+–2r=15 | | 3x+12+9x=73 | | -.25(x-16)=21 | | (x)=16^2+4x-30 |